Time Value of Money adalah nilai waktu dari uang, didalam pengambilan keputusan jangka panjang, nilai waktu memegang peranan penting
Nilai yang akan datang
Nilai yang akan datang
Future value (terminal value) adalah nilai uang yang akan datang dari satu jumlah uang atau suatu seri pembayaran pada waktu sekarang, yg dievaluasi dengan suatu tingkat bunga tertentu.
Nilai yang akan datang
Future value (terminal value) adalah nilai uang yang akan datang dari satu jumlah uang atau suatu seri pembayaran pada waktu sekarang, yg dievaluasi dengan suatu tingkat bunga tertentu.
Nilai sekarang
Nilai Sekarang (present value)
Adalah nilai sekarang dari satu jumlah uang/satu seri pembayaran yang akan datang, yang dievaluasi dengan suatu tingkat bunga tertentu.
Menghitung nilai pada waktu sekarang jumlah uang yang baru dimiliki beberapa waktu kemudian.
AnuitasNilai Sekarang (present value)
Adalah nilai sekarang dari satu jumlah uang/satu seri pembayaran yang akan datang, yang dievaluasi dengan suatu tingkat bunga tertentu.
Menghitung nilai pada waktu sekarang jumlah uang yang baru dimiliki beberapa waktu kemudian.
I. Pengertian
Anuitas : Cara pembayaran hutang dengan jumlah yang sama besar dan dalam jangka waktu yang sama
1. Angsuran (An)®Dalam Anuitas (A) terkandung : —–
2. Bunga (Bn)®—–
A = An + Bn
• Anuitas Biasa
Contoh :
Seseorang meminjam Rp 100.000,00 dengan pengembalian sistem angsuran anuitas, setahun kemudian. Hutang tersebut akan diangsur selama 5 tahun dengan suku bunga 4 % per tahun. Setelah dihitung, pengembalian tiap tahun sejumlah Rp 22.462,71.
Buatlah tabel rencana angsuran !
Tabel Rencana Angsuran
Tahun Sisa hutang Anuitas : Rp 22.462,71 Sisa hutang
Ke- Awal tahun ke- Bunga akhir th ke- Angsuran akhir th ke- Akhir tahun ke-
1 Rp 100.000,00 Rp 4.000,00 Rp 18.462,71 Rp 81.537,29
2 Rp 81.537,29 Rp 3.261,49 Rp 19.201,22 Rp 62.336,07
3 Rp 62.336,07 Rp 2.493,44 Rp 19.969,27 Rp 42.366,80
4 Rp 42.366,80 Rp 1.694,67 Rp 20.768,04 Rp 21.598,76
5 Rp 21.598,76 Rp 863,95 Rp 21.598,76 Rp 0
A = A1+B1 = A2+B2 = A3+B3 = An + Bn
• Anuitas Terhutang
H = A1 + A2 + A3 +…….+ An
H = A1 + A1(1+b) + A1(1+b) + …. + A1(1+b)
Deret geometri
A : A1
r : (1 + b) Sn =
n : n
= A1
= A1
Kesimpulan: Rumus mencari Hutang mula-mula dan Rumus mencari Angsuran pertama
H = A1
atau A1 =
• Nilai sekarang anuitas
adalah sebagai nilai i anuitas majemuk saat ini dengan pembayaran atau penerimaan periodik dan n sebagai jangka waktu anuitas.
PVAn = A1 [(S(1+i) n ] = A1 [ 1 – {1/ (1+ i)n /i } ]
Nilai Sekarang Dari Anuitas Terhutang
Berguna untuk mengukur setiap pembayaran yang maju satu periode atau pembayaran pada awal tahun dengan menggunakan formulasi :
An (Anuitas Terhutang) = PMT (PVIFAk,n)(1+k)
Berguna untuk mengukur setiap pembayaran yang maju satu periode atau pembayaran pada awal tahun dengan menggunakan formulasi :
An (Anuitas Terhutang) = PMT (PVIFAk,n)(1+k)
Anuitas Abadi
Sebagaian besar anuitas terbatas jangka waktunya secara defiinitif misalnya 3 tahun atau 5 tahun, tetapi terdapat juga anuitas yang berjalan terus secara infinitif, disebut anuitas abadi (perpetuities). Nilai sekarang dari anuitas abadi adalah:
Nilai sekarang anuitas abadi = pembayaran/tingkat diskonto=PMT/r
Sebagaian besar anuitas terbatas jangka waktunya secara defiinitif misalnya 3 tahun atau 5 tahun, tetapi terdapat juga anuitas yang berjalan terus secara infinitif, disebut anuitas abadi (perpetuities). Nilai sekarang dari anuitas abadi adalah:
Nilai sekarang anuitas abadi = pembayaran/tingkat diskonto=PMT/r
Nilai Sekarang dan Seri Pembayaran Yang Tidak Rata
Dalam pengertian anuitas tercakup kata jumlah yang tetap, dengan kata lain anuitas adalah arus kas yang sama di setiap periode. Persamaan umum berikut ini bisa digunakan untuk mencari nilai sekarang dari seri pembayaran yang tak rata:
Nilai sekarang anuitas abadi = pembayaran/tingkat diskonto = PMT/r
Dalam pengertian anuitas tercakup kata jumlah yang tetap, dengan kata lain anuitas adalah arus kas yang sama di setiap periode. Persamaan umum berikut ini bisa digunakan untuk mencari nilai sekarang dari seri pembayaran yang tak rata:
Nilai sekarang anuitas abadi = pembayaran/tingkat diskonto = PMT/r
Periode Kemajemukan Tengah Tahunan atau Periode Lainnya
Dalam contoh di atas di asumsikan bahwa pengembalian diterima 1 tahun sekali. Misalnya anda menabung di suatu bank yang memberikan suku bunga majemuk tengah tahunan atas dasar suku bunga 6% setahun. Bila anda menabung $ 1000 berapa uang anda setelah 1 tahun? Pemajemukan tengah tahun berarti bunga di hitung tiap 6 bulan sekali, prosedurnya di uraikan di tabel 10.4, dalam hal ini suku bunga tahunannya dibagi 2, sedangkan periode pemajemukannya jadi lipat 2 karena bunga di perhitungkan 2 kali dalam setahun. Hasil pada akhir periode 6 bulan kedua sebesar $ 1060,90 bila dibandingkan dengan pemajemukan tahunan $ 1000 (FVIF(6%,1) = $ 1000 (1,06) = $ 1060, terlihat bahwa pemajemukkan tengah tahunan memberikan hasil yang lebih tinggi. Hal ini terjadi karena anda memperoleh bunga atas bunga dalam frekuensi yang lebih sering.
Dalam contoh di atas di asumsikan bahwa pengembalian diterima 1 tahun sekali. Misalnya anda menabung di suatu bank yang memberikan suku bunga majemuk tengah tahunan atas dasar suku bunga 6% setahun. Bila anda menabung $ 1000 berapa uang anda setelah 1 tahun? Pemajemukan tengah tahun berarti bunga di hitung tiap 6 bulan sekali, prosedurnya di uraikan di tabel 10.4, dalam hal ini suku bunga tahunannya dibagi 2, sedangkan periode pemajemukannya jadi lipat 2 karena bunga di perhitungkan 2 kali dalam setahun. Hasil pada akhir periode 6 bulan kedua sebesar $ 1060,90 bila dibandingkan dengan pemajemukan tahunan $ 1000 (FVIF(6%,1) = $ 1000 (1,06) = $ 1060, terlihat bahwa pemajemukkan tengah tahunan memberikan hasil yang lebih tinggi. Hal ini terjadi karena anda memperoleh bunga atas bunga dalam frekuensi yang lebih sering.
Amortisasi Pinjaman
Adalah suatu pinjaman yang dibayar kembali dengan jumlah pembayaran yang sama besar setiap periode selama jangka waktunya.
Adalah suatu pinjaman yang dibayar kembali dengan jumlah pembayaran yang sama besar setiap periode selama jangka waktunya.
Sumber : geocities.ws/akuntansi_fe_um/manj.../modul4timevalue.doc – Miri
www.e-dukasi.net
rhassan.staff.gunadarma.ac.id
Tidak ada komentar:
Posting Komentar